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Abstract - An exact integral theory of the planar radiative transfer with isotropic scattering and general 
boundary conditions is presented in the paper. The analytical solution to the problem is numerically 
processed for two different specializations of the emissivity and reflectivity properties of the bounding 
surfaces. Results are given for the total and angular radiation intensities as well as for the net radiative flux. 

NOMENCLATURE 

a, optical half-thickness; 

c, albedo ; 
JR, nth exponential integral; 

1, angular radiation intensity; 

:: 

total radiation intensity; 
source term; 

49 net radiative flux; 

4+,4-y forward, backward radiative flux. 

Greek symbols 

P =Ps 

Pd = Y, 

PS = B, 
7, 

Subscript 

i = 1,2, 

emitted power ; 
emissivity of the boundary; 
cosine of the angle between the direction of 
radiation intensity and the positive T axis; 

f Pd> boundary reflectivity ; 
diffuse component of p; 
specular component of p ; 
optical coordinate. 

relative to the boundary T = - a, T = a. 

INTRODUCTION 

THE PAPER deals with the radiative transfer in an 
absorbing, scattering, emitting gray medium bounded 
by two parallel plane surfaces. The optical depth of the 
slab is 2a and the two bounding surfaces, which are 
kept at uniform temperature T, and T,, respectively, 
are assumed to emit diffusely with emissivities &I and 
Q, and to reflect both diffusely and specularly with 
reflectivities pi = p4 + pf (i = 1,2). 

The aim of the paper is to point out how the 
radiative transfer within the participating medium is 
affected by : 
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(ii) 

the emissivity and reflectivity properties of the 
bounding surfaces as well as by the interaction 
between the bounding surfaces themselves; 
the scattering properties of the participating 
medium. 

For the case of constant transparent boundaries 
(Ei = pi = 0) with zero externally applied radiation, 
rigorous numerical results have been obtained by the 
integral transform method for both radiative transfer 
[l] and neutron transport [2], with isotropic and 
anisotropic scattering, respectively. The case E,, pi # 0 
has been extensively treated for isotropic scattering. 
To the authors’ knowledge the most rigorous numeri- 
cal results so far available in the literature are the ones, 
based on Case’s eigenfunction expansion method [3], 
given by Lii and Ozisik [4] for the radiative flux 
through the boundary surfaces. 

For the case of linearly anisotropic scattering ap- 
proximate results have been given by Beach et al. [5] 
who resort to Case’s method. Other approximate 
treatments of the anisotropic scattering case can be 
found in the literature, while an extension of the 
rigorous procedure adopted in [2] is now in progress. 

In this paper a rigorous treatment of the isotropic 
case with the most general properties of the bounding 
surfaces is considered. The azimuthal symmetry of the 
internal source and of the boundary conditions is 
assumed throughout the discussion. 

The paper consists of two sections. In Section 1 we 
present the exact theory for the problem under con- 
sideration by resorting to the linear Boltzmann equa- 
tion for radiative transfer. An analytical series solution 
to the problem is obtained, the convergence rate of 
which can be estimated a priori to be very good. This 

analytical solution is then numerically processed in 
Section 2 for two different specializations of the 
properties of the bounding surfaces. Both angular and 
total radiation intensities are evaluated as well as the 
net radiative flux. 
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I. THEORY 

1.1. Equations for the angular and total radiation 

intensities 

The physical situation sketched in the introduction 
can be adequately described by the linear integro- 
differential Boltzmann equation, which in the same 
notations as in [6] reads as 

(-a<r<a; -1 <pQ l), 

where I(r,p) is the unknown angular radiation 
tensity. Equation (1) will be integrated over 

following general boundary conditions, ~E(O, l), 

l(-a,p) = zht(,r) + PrI(-a, -P) 

.i 

1 

+ Yl91(/4 $I( -a, - Ir’ )h’, 
0 

where 
I 

1 

+ Y292(P) dl(a, d)dd, 
0 

(1) 

in- 
the 

(2) 

ai = cio7y, fli = Pf, yi = J$, (i = 1,2) (3a) 

and hi(p) and gi(p) (i = 1,2), which are normalized to 

(3b) 

account for the angular distributions of the emitted 

and the non-specularly reflected radiation (when h,(p) 

= gi(p) = 2, then the boundary conditions of equa- 
tions (2) coincide with those usually adopted in the 
literature [5]). Resorting to the Green’s function 

method, it can be verified that the original integro- 
differential problem, equations (1) and (2), can be 
reformulated in a purely integral form, namely, &O, l), 

where 

I’ 

I 
I,(s) = 2n I(r> p)dp Pa) 

-I 

is the total radiation intensity, and 

Jo = [(--a, -P), J*(P) = I(~,P). (5b) 

We now operate successively on equations (4) 

through two different steps. First by integrating over 
~E(O, 1) and summing up the resulting equa- 
tions we get a linear integral equation for I,(r) in terms 

of Jr(n) and Jz(p). Then, by specializing equations (4) 
at r = &a, we get two equations for Jt(n) and J2(n), 
respectively, in terms of I,(T). Finally, by eliminating 
J,(p) and J2(p) from the resulting system, we get the 
linear integral equation for the total radiation intensity 

f 

II 
I,(t) = c K(t, r’)l,(r’)dt’ + S(T), (6) 

--Y 

with kernel 

K(r, 7’) = ;E,( )T - 7’1) 

and known term 

S(7) = SO(S) + i: 
J‘ 

1 

Hi(7, Plih)dP. (W 
i=l 0 

The functions Hi(7, p), I?,@, T), S,(r) and j,(p) appear- 
ing in equations (7a) and (7b) are explicitly given in 
Appendix I. 

Once equation (6) is solved for I,(T), from equations 
(4) there follows the angular radiation intensity I(r, p), 

and then the net radiative flux 

9(r) = 9+(r) - 9-(r) 

i 

*I 

J‘ 

1 

= 
PI(T, pc)b - d(T, -d+ (8) 

-0 0 

can also be evaluated. 

1.2. Solution of equation (6) 

In order to solve equation (6) we set 

where P,(x) denotes the nth Legendre polynomial. 
Introducing equation (9) in equation (6) we have 

+ i .I,’ exp(‘$)Q(r’,r)dr’ + zh,(p) 
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As for the two solutions expressed by equation (9) and 
equation (10) respectively, we comment that, when 
they are truncated at the same term n = N, the 
solution, equation (lo), turns out to be more accurate 
than the corresponding one of equation (9), especially 
for vatues of T close to the boundaries [7]. 

According to classical methods, as illustrated for 
instance in [S], we now project equation (10) over the 
denumerable sequence of Legendre’s polynomials 
P,(T/u). The unknown coefficients & are then rec- 
ognized to be in turn solutions to the system of infinite 
linear algebraic equations 

rm=c c .&&fB,, (m=O,l,... 1, (11) 
?I=0 

the matrix element A,, being given by 

A _B 2m + 1)(2n + l)]“Z 
Inn - 

T 

2e 

j@_ K(T, T')($bdT' (12a) 

and the known term by 

By recalling the kernel and the source term of 
equation (6), one can evaluate A,, and B,, and then 
extract the &‘s from the system of equations (11). In 
practice, the infinite system of equations (11) is actually 
replaced by a finite system of order N (N = 0, 1,2, . . .). 
That the sequence of the approximate solutions of 
order N converges - in the norm of the Hilbert space 
L2( -a,a) - to the exact solution of equation (6) is 
guaranteed a priori as the kernel K(T,T') is of finite 
double norm [7] in L,(-a,a) and the known term 
S(T) also belongs to L,( -a,~), provided l/c is not an 
eigenvalue of the linear integral operator generated by 
K(T, T') [S]. The rate of convergence can be expected to 
be satisfactory as already proved by analogous appli- 
cations of the theory in the allied field of neutron 
transport [lo]. 

2. APPLICATIONS 

2.1. Generalities 

Two applications of the theory expounded in Sec- 
tion 1 have been considered, nameiy and 

(if Q = 0, /I, = y, = 0, h, = h, = g2 = 2, 

that is, the bounding surface 1 is black. This case will be 
referred to as the case of a black surface. 

(ii) Q = 0, PI = /I2 = 0, h, = h2 = g1 = g2 = 2, 

that is, both the bounding surfaces are not specularly 
reflecting. This case will be referred to as the case of 
zero specular reflectivity. For both these cases numeri- 
cal results are obtained for the total and angular 
radiation intensities as well as for the net radiative flux. 

Radioative transfer in an absorbing-scattering slab 

2.2. The case of a black surface 

In this case the kernel of equation (6) is 

K(T,T')= iE,(jT - T'])+ ;/%,(2a - 5 - T') 

+ yE,(a - r)E2(a - T'), (13a) 

where E,(x) is the exponential integral of order n, and 
we set p2 = fi, yz = y. The source term of equation (6) 
is given by 

S(T) = Za,E,(a + T) + [2a2 + 4ya,E,(2a)j 

x E&I -2)-l- 2@.+&(3a - 5). (13b) 

The matrix elements A,,,,, of the system of equations 
(11) can be expressed as 

A = [(2m + 1)(2n + l)]‘!’ 
Ill” 

zu 

x 
1 

; G,, + ; B&, + %,D. , Wd 

whereas for the known terms B, we obtain 

B = 2m e 1 lj2 
WI 

( ! 
- 

2a 
{[(-lY2al + 2a2 

+ 4ya,E,(Za)]D, f 2SaiFm’,). (14b) 

The coefficients C,,, E,,, D, and F,, occurring in 
equations (14a) and (14b), are listed in Appendix 11. 

The solution I,(T) to equation (6) can thus be cast in 
the form 

+ +.*(T) + yD,E& - T) + S(T), (15) 

the functions U,(T) and U:(t) being reported in 
Appendix III. OnceI, is known, it is introduced in 
equations (4) to yield the angular radiation intensity 

(OdP< 1) 

1 
+%2a,exp - 

( J 
y (16a) 

(16b) 
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where the function W,(r,p) is explicitly given in 
Appendix IV. 

According to equation (8) we can finally evaluate the 
radiation flux vector intensity 

+ %'~n-%(~--T) + pH.(7)1 

+ [2a,+4ya,E,(?a)lE,(a-r) 

f 2fla,E,(3a-r) 
i 
, (17) 

the functions G,(T) and H,(r) being given in Appendix 
V. It must be underlined that the coefficients C,,, E,,, 

D,, F,, and the functions U,(r), U:(T), W,(r,p), G,(r), 
H,(s), listed in the appendices, are all evaluable in 
terms of elementary operations and are analytically 
expressed in terms of special functions, like Gegen- 
bauer polynomials, exponential integrals and incom- 
plete gamma functions [12]. The spectral radius of the 
linear integral operator generated by the kernel 
K(r, T’), equation (13a), can be estimated as shown in 
[ll]. The result of this estimation confirms the con- 

vergence of the iterative procedure in L2( - a, a) since 

T 

a=.1 c-.2 

d,=l. d,=O 

p < ess. sup. 
s 

’ (K(r,r’)(dr’ < 1 
Tt(--...) _a 

1 - (B + Y) - 
2 

W2aX (18) 

which is less than l/c provided one of the two numbers 

c or (/I + y) is less than 1, and the other is not greater 
than 1. 

The case x1 = 1, a2 = 0 (i.e. emission only by the 
surface T = -a) has been considered in the numeiical 
processing of the relevant formulae given above; 
results for all the significant physical quantities are 
given in Figs. l-4. The total radiation intensity I0 is, of 
course, extremely sensitive to the presence of a reflect- 
ing surface at the boundary, T = a, at least in the range 
of low and medium optical thickness, i.e. in those 
situations where enough energy is available for the 
reflection. The resulting effects on the I, distribution 
are obviously more relevant the higher albedo is. 

Diffuse reflection is more effective than the specular 
kind in increasing the local values of I,, as shown by the 
curves 7 and 5 of Fig. 1 which refer to the cases y = 1, 
b=O, and y =O, p = 1 respectively. This trend is also 
confirmed by a comparison of the curves 6 and 5 of the 
same figure which allows one to infer that when total 
reflection occurs at the wall, ‘5 = a, the presence of a 

a =I. c=.8 

FIG. 1. Influence of the wall reflectivity on the total intensity for the black surface case. 
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FIG. 2. Influence of the wall reflectivity on the angular intensity at the reflecting wall for the black surface 
case. 

diffuse component of the wall reflectivity enhances the 
values of I,. With regard to the angular intensity 
I(r, p), results are given at the boundary, r = a, (Fig. 2) 
and at the mid-slab plane (Fig. 3) for different values of 
a and c. 

I(T, p), is evaluated. 

For p > 0, the I(r,p) curves are affected by the 
reflection at the boundary but are slightly sensitive to 
the reflection mode and are practically coincident 
when pure specular and diffuse total reflection are 
considered. For p < 0 (0 > 90”), on the contrary, the 
I(T, ji) curves differ markedly depending on the re- 
flection mode. 

2.3. The case of zero specular r<jlectiuity 

In this case the kernel of equation (6) is given by 

The trend exhibited by the I(r,p) curves is relevant 
to explain the very slight dependence of the q+ and q- 
curves, and then of the q curve, on the reflection mode 
at the reflecting boundary. When total reflection is 
considered, q+ curves are practically independent of 
the reflection mode since the corresponding 117,~) 
curves are practically coincident for g > 0, while for ,B 
< 0, higher values result for f(s,p) in the diffuse 
reflection case than in the specular one, essentially for 
p -* 0, in such a way that the difference between the 
two cases is reduced when q-, i.e. the first moment of 

X {Y,Ez@J + T)Ez(a + T’) 

+ y2E2(a - r)E,(u - t’) 

+ 2Y,?t,E~(2af[Ez(a+T)~,(~-T’f 

+ &(a - r)E,fa + r’)]i, (@a) 

which is symmetric like the kernel ofequation (13a) for 
the case of a black surface, whereas for the source term 
S(T) we have 

S(7) = I _4y ;2Eit2u) PI + 4wzE3Wl 
1 

X J&(a+?) + [2a,+4y2a,E,(2a)]E2(a-7)). (19b) 

Following the scheme adopted for the case of a black 
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FIG. 3. Influence of the wall reflectivity on the angular intensity at the mid-slab plane for the black surface 
case. 
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Radiative transfer in an absorbing-scattering slab 1711 

surface, the expressions below result for the general The corresponding equations to (16a) and (16b) for 

matrix element I(T,p) and I(T, -P) are now (0 G P G 1) 

A = [(2m+ 1)(2iz+ l)]’ * 
Ill” 2a 

f C_” 

(- l)m+“;‘r [l+(-l)n2;.2EJ(2a)] 

+- 
+Y,[l+(-l)“~,E,(2a)] 

1-4~,~&(2a) 

x D,D, 
i 

(20a) 

and the general known term of the system of equations 

(11) 

x D,exp 

Za, ++,a,E,(Za) 

' 1 - 4y,y,E;(Za) exp 
(22a) 

and 

x D,{(- 1)“[2a, + 4y,al&(2u)] 

+ [2x, + %v,.W24). t20bI I(% -PC) = & (y)’ ‘t. 

For the total radiation intensity I,(T), from equation 
(6), we then get 

I,(T) = C[1 -47,;2E;(2CI)]-’ n 

+ ;‘I[1 +( - 1)“27,E,(2a)] 

1-4~,.&(2a) 

x D,E&+T)+;q,[l+(-1)“2;‘,E3(2u)] 
1 2a,+4;+,a,E3(2u) 

+- 
2n l-4;,&(2a) exp 

(21) Wb) 

FIG. 5. Influence of the walls’ reflectivity on the total intensity for the case of zero specular reflectivity. 
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FIG. 6. Influence ofthe walls’ reflectivity on the angular intensity at the wall T = u for the case ofzero specular 
reflectivity. 

For the net radiative flux it follows that 

q(r) = ;“jo (qg)’ * L{G,W-(-~)“G,(-T) 

+ 20,[1-4y,y,E;(24]-‘[( - WY, 

x (1 + (- 1 YZy,E,(Za))E,(a + 5) 

-Y~(l+(-l)“2~,E,(24)E&-~)l~ 

+ [1--4;~,;,E:(2a)]-‘[(2a, ++,a,E,(2a)) 

x E3(a+T)--(2az+4~,a,E,(2a))E,(a-r)]). 

(23) 

The coefficients C,,, D,, and the functions U,(r), 
W,(r,jl), G,(r) in equations (20)-(23), are the same as 
the ones already defined for the case of a black surface, 

and can be found in the appendices. 
For the spectral radius p of the linear integral 

operator generated by the kernel K(T,T’), equation 
(19a), we have 

s 

Y 1 
f> = ess. sup. ]K(r,T’)]dr’ < 1 - - 

W--.&l, --y 2 

X 
(1 -?,)(1+2@,(24)+(1 -?A(1 +2;,&(2a)) 

1 - 4;,&(2a) 

x Ez(2a) < 1. (24) 

For (1 to be less than 1, it is sufficient that only one of 
the three numbers c,;~,, ;‘2 be less than 1, the other two 

both being allowed to assume the value one. 
Numerical results have been obtained for the cases 

a, = 1, a2 = O,O.S, 1 and for various combinations of 
;‘, and yr. 

Since only diffuse reflection has been considered at 
the walls, the analysis of the results here is more straight 
forward than in the black surface case : the influence of 
the walls reflectivity on the significant physical quan- 
tities can be easily grasped from Figs. 5-9. 

1. 

2. 
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FIG. 7. Influence of the walls’ reflectivity on the angular intensity at the mid-slab plane for the case of zero 
specular reflectivity. 
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~(~~~(mcn+l+v-2K)(/m-n/+a-2E;) Y=- 2,..., m+n+l, 

(I 

D,,, = &(a - x)P,(x/u)dx 
--u 

= t (: 1)“(2K - l)!!(m -t K)! --- 
*=0 aK(2K)!(m - K)! 

(2a)X+‘E,(2a) + (2~1)~+*E,(2a) 

(K + l)! (I< + 2)! 

(2a)K+Z 
+ ~- Ii,+ ,(2@) 

K+2 
Y Y 

Em = s f’&la)dx s E,G - x - y)P.Cv/~)dy, 
--u -Y 
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=2a C m 2K(2K- ~jFf(m+Kj!j~,.+ ,ij;~_jj!12’+p(40j 
K=ll (2K)!(m - K)! 

+j&‘Qj +,$u+ 1j!V,+,(40) 
I [ 

- Ed2aj 

+i25E,(2a) +]$j + 1)!vr+,(2a) . 

APPENDlX Ill 

U”(X) = J E,(ix - YIV’.W)dy 
-u 

+ K! VK(LI - x,), 

f-?,~:“%‘~) is Gegenbauer ultrasphericai polynomial; 

s 

(1 
U,*(x) = E&a - x - y)P~(~/u~~~ 

-u 

t-l? 
= K$” (-- lYK2K(2K - l)!!c;!;‘“‘(x/u) ; _ 

j,o GbY(j + l)!(K -j)! 

x (Qu - xY+‘[E,(3n -xl + j!Y,(3u - x)3 - (a - xjJ+‘[E,(a - x) 

+ j!V& - xj]). 

APPENDIX IV 

APPENDIX V 

a+x 
+-E,(a+x)+ 

(K + 2)! 

H,(x) = J E,G - x - yV’,W)d.v 
-Y 

a-x 
+ m(j + l)!VJ+,(o - xj 11 
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TRANSFERT RADIATIF DANS UNE PLAQUE ABSORBANTE ET 
DIFFUSANTE LIMITEE PAR DES SURFACES EMETTRICES 

ET REFLECHISSANTES 

R&m-On prdsente une thCorie intCgrale exacte du transfert radiatif plan avec une diffusion isotropy et des 
conditions aux limites g&&ales. La solution analytique du probltme est numkriquement dtveloppb pour 
deux sp&zialisations diffkrentes de I’Cmissivit6 et de la rCflectivitt des surfaces front&es: Des r&ultats sont 

donnds pour les intensitb totales et angulaires et pour le flux net de rayonnement. 

STRAHLUNGSAUSTAUSCH AN EINER ABSORBIERENDEN UND STREUENDEN PLATTE, 
DIE VON EMITTIERENDEN UND REFLEKTIERENDEN OBERFLACHEN BEGRENZT 

WIRD 

Zusammenfassung-In dieser Arbeit wird eine exakte integrale Theorie des Strahlungs austausches einer 
ebenen Fkiche mit isotroper Streuung und allgemeinen Randbedingungen angegeben. Die analytische 
Liisung des Problems wird numerisch fiir zwei verschiedene Spezialfille der Emissions- und der 
Reflexionseigenschaften der umgebenden OberflHchen durchgefiihrt. Ergebnisse werden sowohl fiir die 
Gesamtstrahlung als such fiir die Richtungsverteilung und den Netto-Energiestrom der Strahlung 

angegeben. 

JlY’lMCfblti IlEQE~IOC B fIJlwKOM ~1OrJlO~AIOl~EM M PACCEllBAIOUIEhl 
<‘ItOE, 01‘PAHH~IEHHOM H3JlY%l\K)~Efi Ii OTPAXAK>qEti 1lOBEPXHOCTIIMM 

AHIWTOIIWU -- H?Jiarae-lcn HHTerpxuhllatJ ‘TeopHn rlpoue~ca nnyhJepllol_0 nywcroro lleptioca rlptl 
llanwwJJ mo~ponmro pacceJtentltiK 11 051utix rp~JJwlltMX yc~~osttii. llposenctta wcnelltlan o(ipa60TKa 

tJlltUtJlW’leCKO~0 ~JlJCtJHR llJlR .,lDyX ,7a3JlltWJhlX CJlyWekJ: H L’ty~alOUleil H OT~XGiIOLl(efi Or~tlJPJtJtJi,- 

K>IIUIX JlOiJCpXllOCTeii. ~~~tltJO:I!IlCJt p?yJlh raThI pWJi+TOtJ CyMMpllhlX II yrJlOBblX IIIITellCIlIJIIOCTei 

JrJnyselltJa. a TaKme ~3yJlbTtl~ytOllleJo ny~JtlcTor0 llOlOK3. 


